Tgf-β1 Inhibits Cftr Biogenesis and Prevents Functional Rescue of ΔF508-Cftr in Primary Differentiated Human Bronchial Epithelial Cells
نویسندگان
چکیده
CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(-) channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF)-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508) leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s) that interfere with the rescue in vivo could be considered. The cytokine TGF-β1 is frequently elevated in CF patients. TGF-β1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-β1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-β1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-β1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE) cells from non-CF individuals. TGF-β1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-β1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-β1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.
منابع مشابه
Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain
The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delive...
متن کاملImprovement of defective cystic fibrosis airway epithelial wound repair after CFTR rescue.
Airway damage and remodelling are important components of lung pathology progression in cystic fibrosis (CF). Although repair mechanisms are engaged to restore the epithelial integrity, these processes are obviously insufficient to maintain lung function in CF airways. Our aims were therefore to study how the basic cystic fibrosis transmembrane conductance regulator (CFTR) defect could impact e...
متن کاملCorrection: Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect
The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) i...
متن کاملDeleterious impact of Pseudomonas aeruginosa on cystic fibrosis transmembrane conductance regulator function and rescue in airway epithelial cells.
The epithelial response to bacterial airway infection, a common feature of lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis, has been extensively studied. However, its impact on cystic fibrosis transmembrane conductance regulator (CFTR) channel function is not clearly defined. Our aims were, therefore, to evaluate the effect of Pseudomonas aeruginosa on CFTR funct...
متن کاملSildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease.
The phosphodiesterase-5 inhibitor sildenafil is an established and approved drug to treat symptoms of a variety of human diseases. In the context of cystic fibrosis (CF), a genetic disease caused by a defective CFTR gene (e.g. ΔF508-CFTR), it was assumed that sildenafil could be a promising substance to correct impaired protein expression. This study focuses on the molecular mechanisms of silde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013